Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-[(E)-2-(4-Chlorophenyl)ethenyl]-1methylpyridinium iodide monohydrate ${ }^{1}$

Kullapa Chanawanno, ${ }^{\text {a }}$ Suchada Chantrapromma ${ }^{\text {b* }}$ and Hoong-Kun Func \S

${ }^{\text {a }}$ Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ${ }^{\mathbf{b}}$ Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ${ }^{\text {c }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: suchada.c@psu.ac.th
Received 22 August 2008; accepted 29 August 2008
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.038 ; w R$ factor $=0.104$; data-to-parameter ratio $=25.9$.

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}^{+} \cdot \mathrm{I}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the cation is nearly planar and exists in an E configuration; the dihedral angle between the pyridinium and benzene rings is $0.98(17)^{\circ}$. The cations stack in an anti-parallel manner along the a axis through two $\pi-\pi$ interactions between the pyridinium and benzene rings [centroid-centroid distances 3.569 (2) and 3.6818 (13) A, respectively]. The cation, anion and water molecule are linked into a chain along the a axis by weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions together with $\mathrm{O}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds and the chains are further connected into a three-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987). For related structures, see, for example: Chantrapromma et al. (2007a,b,c). For background on non-linear optical properties, see, for example: Lakshmanaperumal et al. (2004); Marder et al. (1994); Qiu et al. (2007); Williams (1984); Zhai et al. (1999); Zhan et al. (2006).

[^0]
$\mathrm{I}^{-} \quad \cdot \mathrm{H}_{2} \mathrm{O}$

Experimental

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}^{+} \cdot \mathrm{I}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$	$V=1460.68(5) \AA^{3}$
$M_{r}=375.62$	$Z=4$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=7.0876(1) \AA$	$\mu=2.36 \mathrm{~mm}^{-1}$
$b=9.8096(2) \AA$	$T=100.0(1) \mathrm{K}$
$c=21.0940(4) \AA$	$0.28 \times 0.17 \times 0.07 \mathrm{~mm}$

$c=21.0940$ (4) \AA
$0.28 \times 0.17 \times 0.07 \mathrm{~mm}$
$\beta=95.147(1)^{\circ}$

Data collection

Bruker SMART APEXII CCD 18928 measured reflections
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.560, T_{\text {max }}=0.845$
4241 independent reflections
3486 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037 \quad 164$ parameters
$w R\left(F^{2}\right)=0.104$
$S=1.13$
H -atom parameters constrained
4241 reflections
$\Delta \rho_{\max }=2.13 \mathrm{e} \AA_{\circ}^{-3}$
$\Delta \rho_{\text {min }}=-0.79 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{I} 1$	0.86	2.87	3.592 (4)	143
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{I} 1^{\text {i }}$	0.85	2.87	3.567 (4)	141
C14-H14A . O 1 W	0.96	2.50	3.202 (5)	130
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{D} \cdots \mathrm{O} 1 W^{\text {ii }}$	0.96	2.56	3.460 (5)	157
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{I} 1^{\text {iii }}$	0.93	3.20	3.830 (4)	127
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{I} 1^{\text {iv }}$	0.93	3.17	3.825 (4)	129
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{I} 1^{\text {iv }}$	0.93	3.21	3.840 (4)	127
Symmetry codes: $-x+2,-y+1,-z+1 ;$	$\begin{array}{r} x-1 \\ x,-y+ \end{array}$	(ii)	$+1,-y+1$	+ 1; (iii)

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. Financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, is gratefully acknowledged. The authors also thank Prince of Songkla University, the Malay-

organic compounds

sian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/ 811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2329).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chantrapromma, S., Jindawong, B., Fun, H.-K. \& Patil, P. S. (2007a). Acta Cryst. E63, o2124-o2126.

Chantrapromma, S., Jindawong, B., Fun, H.-K. \& Patil, P. S. (2007b). Acta Cryst. E63, o2321-o2323.
Chantrapromma, S., Jindawong, B., Fun, H.-K. \& Patil, P. S. (2007c). Anal. Sci. 23, x81-x82.
Lakshmanaperumal, C. K., Arulchakkaravarthi, A., Balamurugan, N., Santhanaraghavan, P. \& Ramasamy, P. (2004). J. Cryst. Growth, 265, $260-$ 265.

Marder, S. R., Perry, J. W. \& Yakymyshyn, C. P. (1994). Chem. Mater. 6, 11371147.

Qiu, F., Xu, H., Cao, Y., Jiang, Y., Zhou, Y., Liu, J. \& Zhang, X. (2007). Mater. Charact. 58, 275-283.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690-703.
Zhai, J., Huang, C.-H., Wei, T.-X., Yu, A.-C. \& Zhao, X.-S. (1999). Solid State Соттии. 109, 733-738.
Zhan, C., Li, Y., Li, D., Wang, D. \& Nie, Y. (2006). Opt. Mater. 28, 289-293.

supplementary materials

Acta Cryst. (2008). E64, o1882-o1883 [doi:10.1107/S1600536808027724]

2-[(E)-2-(4-Chlorophenyl)ethenyl]-1-methylpyridinium iodide monohydrate

K. Chanawanno, S. Chantrapromma and H.-K. Fun

Comment

In the last two decades, many efforts were focused on the discovery of new organic materials which exhibit large nonlinear optical (NLO) properties and would have applications in the fields of optoelectronics and photonics (Lakshmanaperumal et al., 2004; Marder et al., 1994; Qiu et al., 2007; Zhai et al., 1999; Zhan et al., 2006). In order to obtain second-order NLO single crystals, the main requirements should be the choice of molecules with large hyperpolarizability (β) and the alignment of these molecules with optimal orientation into a noncentrosymmetric space group in the crystal (Williams, 1984). Among the known organic NLO materials, ionic chromophores are of great interest because they exhibit large first hyperpolarizabilities (β) and have high melting points and hardness of their crystals. At the molecular level, a generally popular approach towards NLO materials is to design and synthesize compounds with extended conjugated π-systems with donor and acceptor groups because such compounds are likely to exhibit large values of molecular hyperpolarizability (β) and to possess polarization. Styryl pyridinium derivatives are considered to be good conjugated π-systems. In continuation of our on-going research on nonlinear optical materials (Chantrapromma et al., 2007a,b,c), the title compound, (I), was synthesized and the X-ray structure analysis was carried out in order to obtain detailed information about the molecular packing. However, compound (I) crystallizes in monoclinic space group $P 2_{1} / c$ and doesn't exhibit second-order nonlinear optic properties.

The asymmetric unit of the title compound consists of $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}^{+}$cation, I^{-}anion and one water molecule (Fig. 1). The conformation of the cation is essentially planar as indicated by the dihedral angle between the pyridinium ($\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$) and the benzene ($\mathrm{C} 8-\mathrm{C} 13$) rings, being $0.98(17)^{\circ}$. The mean plane through $\mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8$ plane makes dihedral angles of $6.1(4)^{\circ}$ and $6.4(4)^{\circ}$ with pyridinium and benzene rings, respectively. The cation exists in the E configuration and the torsion angle $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8=-179.2(3)^{\circ}$. The bond distances and angles in (I) have normal values (Allen et al., 1987) and comparable with closely related structures (Chantrapromma et al., 2007a,b,c).

The packing of the molecule down the c axis (Fig. 2), showing that the cation is linked with water molecule by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1) and linked with I^{-}anions by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions (Table 1) whereas the I^{-}anion is linked with water molecule by $\mathrm{O}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds, forming one-dimensional chains along the a axis. These chains are further connected into a three-dimensional network (Fig. 2). $\pi \cdots \pi$ interactions involving pyridinium and benzene rings were also observed with $C g_{1} \cdots C g_{2}$ distances of 3.662 (2) \AA (symmetry code; $1-x,-y, 1-z$) and 3.569 (2) \AA (symmetry code; $2-x,-y, 1-z$) ; $C g_{1}$ and $C g_{2}$ are the centroids of the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$ pyridinium and $\mathrm{C} 8-\mathrm{C} 13$ benzene rings, respectively. The crystal is stabilized by $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{I}$ hydrogen bond, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions.

Experimental

The title compound was prepared by mixing solutions of 1,2-dimethylpyridinium iodide, 4-chlorobenzaldehyde and piperidine (1:1:1 molar ratio) in methanol. The resulting solution was refluxed for 12 hr under a nitrogen atmosphere. The solid which formed was filtered and washed with chloroform. Orange plate-like single-crystal suitable for X-ray diffraction

supplementary materials

analysis was obtained by recrystallization from methanol by slow evaporation of the solvent at ambient temperature after several days, Mp. 492-493 K.

Refinement

All H atoms were placed in calculated positions $(\mathrm{O}-\mathrm{H}=0.85-0.86$ and $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{O}$, methyl C), A rotating group model was used for the methyl groups. The highest residual electron density peak is located at $0.76 \AA$ from I1 and the deepest hole is located at $0.59 \AA$ from I1.

Figures

Fig. 1. The title compound showing 50% probability displacement ellipsoids and the atomnumbering scheme. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bond was drawn as dashed line.

2-[(E)-2-(4-Chlorophenyl)ethenyl]-1-methylpyridinium iodide monohydrate

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}^{+} \cdot \Gamma^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=375.62$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=7.0876$ (1) \AA
$b=9.8096$ (2) \AA
$c=21.0940(4) \AA$
$\beta=95.147(1)^{\circ}$
$V=1460.68(5) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 8.33 pixels mm^{-1}
$F_{000}=736$
$D_{\mathrm{x}}=1.708 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 492-493 K K
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 4241 reflections
$\theta=1.9-30.0^{\circ}$
$\mu=2.36 \mathrm{~mm}^{-1}$
$T=100.0$ (1) K
Plate, orange
$0.28 \times 0.17 \times 0.07 \mathrm{~mm}$

4241 independent reflections
3486 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\max }=30.0^{\circ}$
$T=100.0(1) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.561, T_{\text {max }}=0.845$
18928 measured reflections
$\theta_{\text {min }}=1.9^{\circ}$
$h=-9 \rightarrow 9$
$k=-13 \rightarrow 12$
$l=-26 \rightarrow 29$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.104$
$S=1.13$
4241 reflections
164 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0483 P)^{2}+1.1431 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=2.13$ e \AA^{-3}
$\Delta \rho_{\min }=-0.79 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
I1	$0.96440(3)$	$0.30947(2)$	$0.374487(10)$	$0.02517(9)$
Cl1	$0.65015(14)$	$-0.33018(11)$	$0.25791(5)$	$0.0349(2)$
N1	$0.7517(4)$	$0.2927(3)$	$0.58820(14)$	$0.0228(6)$
O1W	$0.4685(5)$	$0.3289(4)$	$0.39663(18)$	$0.0589(10)$
H1W1	0.5617	0.2949	0.3782	0.088^{*}
H2W1	0.3691	0.2881	0.3808	0.088^{*}
C1	$0.7754(5)$	$0.3535(4)$	$0.64637(17)$	$0.0254(7)$
H1A	0.7521	0.4464	0.6498	0.030^{*}
C2	$0.8329(5)$	$0.2805(4)$	$0.69966(18)$	$0.0277(8)$
H2A	0.8473	0.3228	0.7393	0.033^{*}
C3	$0.8698(5)$	$0.1412(4)$	$0.69383(17)$	$0.0262(7)$

H3A	0.9115	0.0900	0.7294	0.031^{*}
C4	$0.8440(5)$	$0.0817(4)$	$0.63559(17)$	$0.0264(7)$
H4A	0.8674	-0.0111	0.6318	0.032^{*}
C5	$0.7828(5)$	$0.1569(4)$	$0.58078(17)$	$0.0221(7)$
C6	$0.7492(5)$	$0.0969(4)$	$0.51828(17)$	$0.0256(7)$
H6A	0.7187	0.1548	0.4839	0.031^{*}
C7	$0.7592(5)$	$-0.0353(4)$	$0.50694(17)$	$0.0268(7)$
H7A	0.7883	-0.0912	0.5421	0.032^{*}
C8	$0.7293(5)$	$-0.1035(4)$	$0.44465(16)$	$0.0235(7)$
C9	$0.7663(5)$	$-0.2435(4)$	$0.44164(18)$	$0.0266(7)$
H9A	0.8075	-0.2903	0.4786	0.032^{*}
C10	$0.7425(5)$	$-0.3135(4)$	$0.38414(19)$	$0.0271(8)$
H10A	0.7680	-0.4063	0.3824	0.033^{*}
C11	$0.6808(5)$	$-0.2432(4)$	$0.33021(17)$	$0.0238(7)$
C12	$0.6421(5)$	$-0.1050(4)$	$0.33059(17)$	$0.0258(7)$
H12A	0.6005	-0.0596	0.2932	0.031^{*}
C13	$0.6668(5)$	$-0.0354(4)$	$0.38847(17)$	$0.0250(7)$
H13A	0.6414	0.0575	0.3896	0.030^{*}
C14	$0.6940(5)$	$0.3805(4)$	$0.53292(18)$	$0.0298(8)$
H14D	0.6802	0.4727	0.5470	0.045^{*}
H14A	0.5754	0.3489	0.5126	0.045^{*}
H14B	0.7889	0.3769	0.5032	0.045^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.02744(14)$	$0.02228(14)$	$0.02596(14)$	$0.00264(9)$	$0.00324(9)$	$0.00111(9)$
C11	$0.0368(5)$	$0.0385(6)$	$0.0293(5)$	$-0.0051(4)$	$0.0027(4)$	$-0.0126(4)$
N1	$0.0206(13)$	$0.0229(16)$	$0.0249(15)$	$0.0010(11)$	$0.0027(11)$	$0.0046(12)$
O1W	$0.0347(17)$	$0.083(3)$	$0.058(2)$	$0.0104(16)$	$-0.0028(15)$	$-0.028(2)$
C1	$0.0246(17)$	$0.0238(18)$	$0.0278(18)$	$0.0003(14)$	$0.0028(14)$	$0.0000(15)$
C2	$0.0255(17)$	$0.032(2)$	$0.0261(18)$	$-0.0004(14)$	$0.0028(14)$	$-0.0020(15)$
C3	$0.0209(16)$	$0.031(2)$	$0.0263(17)$	$0.0017(14)$	$-0.0021(13)$	$0.0030(15)$
C4	$0.0218(16)$	$0.0267(19)$	$0.0307(18)$	$-0.0010(14)$	$0.0017(14)$	$0.0034(15)$
C5	$0.0175(15)$	$0.0230(18)$	$0.0265(17)$	$-0.0009(12)$	$0.0050(12)$	$-0.0007(14)$
C6	$0.0265(17)$	$0.0245(19)$	$0.0258(17)$	$0.0002(14)$	$0.0018(14)$	$0.0001(14)$
C7	$0.0272(17)$	$0.0261(19)$	$0.0268(18)$	$0.0021(14)$	$0.0002(14)$	$-0.0019(15)$
C8	$0.0227(16)$	$0.0244(19)$	$0.0236(16)$	$-0.0012(13)$	$0.0027(13)$	$-0.0021(14)$
C9	$0.0288(18)$	$0.0231(19)$	$0.0272(18)$	$0.0000(14)$	$-0.0009(14)$	$0.0014(15)$
C10	$0.0266(17)$	$0.0195(18)$	$0.035(2)$	$-0.0016(14)$	$0.0038(15)$	$0.0009(15)$
C11	$0.0203(16)$	$0.0253(19)$	$0.0257(17)$	$-0.0029(13)$	$0.0025(13)$	$-0.0064(14)$
C12	$0.0233(16)$	$0.027(2)$	$0.0267(17)$	$0.0026(14)$	$-0.0011(13)$	$0.0029(14)$
C13	$0.0246(16)$	$0.0172(17)$	$0.0329(19)$	$0.0022(13)$	$0.0013(14)$	$0.0009(14)$
C14	$0.037(2)$	$0.025(2)$	$0.0281(18)$	$0.0052(15)$	$0.0056(15)$	$0.0032(15)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cl} 1-\mathrm{C} 11$	$1.744(4)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9300
$\mathrm{~N} 1-\mathrm{C} 1$	$1.361(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.473(5)$

sup-4

supplementary materials

N1-C5
N1-C14
O1W-H1W1
O1W-H2W1
C1-C2
C1-H1A
C2-C3
C2-H2A
C3-C4
C3-H3A
C4-C5
C4-H4A
C5-C6
C6-C7
C1-N1-C5
C1-N1-C14
C5-N1-C14
H1W1-O1W-H2W
N1-C1-C2
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$
C1-C2-C3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$
C5-C4-H4A
N1-C5-C4
N1-C5-C6
C4-C5-C6
C7-C6-C5
C7-C6-H6A
C5-C6-H6A
C6-C7-C8
C6-C7-H7A
C8-C7-H7A
C5-N1-C1-C2
C14-N1-C1-C2
N1-C1-C2-C3
C1-C2-C3-C4
C2-C3-C4-C5
C1-N1-C5-C4
C14-N1-C5-C4
C1-N1-C5-C6
C14-N1-C5-C6

1.361 (5)
1.478 (5)
0.8628
0.8523
1.364 (5)
0.9300
1.399 (6)
0.9300
1.358 (5)
0.9300
1.407 (5)
0.9300
1.444 (5)
1.322 (5)
121.6 (3)
117.3 (3)
121.0 (3)
106.3
121.1 (4)
119.4
119.4
119.0 (4)
120.5
120.5
119.2 (3)
120.4
120.4
121.7 (4)
119.2
119.2
117.4 (3)
119.3 (3)
123.4 (3)
123.9 (3)
118.0
118.0
127.0 (4)
116.5
116.5
0.5 (5)
-178.4 (3)
0.7 (5)
-1.3(5)
0.6 (5)
-1.1 (5)
177.7 (3)
177.9 (3)
-3.2 (5)

C7-H7A	0.9300
C8-C13	1.397 (5)
C8-C9	1.400 (5)
C9-C10	1.391 (5)
C9-H9A	0.9300
C10-C11	1.368 (5)
C10-H10A	0.9300
C11-C12	1.383 (5)
C12-C13	1.396 (5)
C12-H12A	0.9300
C13-H13A	0.9300
C14-H14D	0.9600
C14-H14A	0.9600
C14-H14B	0.9600
C13-C8-C9	118.5 (3)
C13-C8-C7	123.3 (3)
C9-C8-C7	118.2 (3)
C10-C9-C8	121.0 (3)
C10-C9-H9A	119.5
C8-C9-H9A	119.5
C11-C10-C9	118.8 (3)
C11-C10-H10A	120.6
C9-C10-H10A	120.6
C10-C11-C12	122.5 (3)
C10-C11-Cl1	119.1 (3)
C12-C11-Cl1	118.4 (3)
C11-C12-C13	118.4 (3)
C11-C12-H12A	120.8
C13-C12-H12A	120.8
C12-C13-C8	120.9 (3)
C12-C13-H13A	119.6
C8-C13-H13A	119.6
N1-C14-H14D	109.5
N1-C14-H14A	109.5
H14D-C14-H14A	109.5
N1-C14-H14B	109.5
H14D-C14-H14B	109.5
H14A-C14-H14B	109.5
C5-C6-C7-C8	-179.2 (3)
C6-C7-C8-C13	-6.4 (6)
C6-C7-C8-C9	173.2 (4)
C13-C8-C9-C10	0.3 (5)
C7-C8-C9-C10	-179.4 (3)
C8-C9-C10-C11	-0.4 (5)
C9-C10-C11-C12	0.3 (5)
C9-C10-C11-Cl1	-179.9 (3)
C10-C11-C12-C13	-0.2 (5)

supplementary materials

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$0.6(5)$	$\mathrm{C} 11-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-179.9(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-178.4(3)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 8$	$0.0(5)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-173.9(3)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 12$	$-0.1(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$5.1(6)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 12$	$179.6(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W-H1W1 \cdots I1	0.86	2.87	3.592 (4)	143
O1W-H2W $1 \cdots$ I1 ${ }^{\text {i }}$	0.85	2.87	3.567 (4)	141
C14-H14A \cdots O1W	0.96	2.50	3.202 (5)	130
C14-H14D \cdots O1W ${ }^{\text {ii }}$	0.96	2.56	3.460 (5)	157
C1-H1A \cdots I1 ${ }^{\text {iii }}$	0.93	3.20	3.830 (4)	127
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Fl} 1^{\text {iv }}$	0.93	3.18	3.825 (4)	129
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{I} 1{ }^{\text {iv }}$	0.93	3.21	3.840 (4)	127

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+2,-y+1,-z+1$; (iv) $x,-y+1 / 2, z+1 / 2$.

Fig. 1

Fig. 2

[^0]: ${ }^{1}$ This paper is dedicated to Her Royal Highness the late Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of science in Thailand.
 § Additional correspondence author, e-mail: hkfun@usm.my.

